三軸加速度傳感器在跌倒檢測中的應用
而跌倒過程中的加速度變化則完全不同。圖4給出的是意外跌倒過程中的加速度變化曲線。通過圖4和圖3的比較,可以發(fā)現(xiàn)跌倒過程中的加速度變化有4個主要特征,這可以作為跌倒檢測的準則。這4個特這在圖4中以紅色的方框標注,下面將對其逐一進行詳細介紹。
圖4 跌倒過程中的加速度變化曲線
1. 失重:在跌倒的開始都會發(fā)生一定的失重現(xiàn)象。在自由落體的下降過程,這個現(xiàn)象會更加明顯,加速度的矢量和會降低到接近0g,持續(xù)時間與自由落體的高度有關。對于一般的跌倒,失重現(xiàn)象雖然不會有像自由落體那么明顯,但也會發(fā)生合加速度小于1g的情況(通常情況下合加速度應大于1g)。因此,這可以作為跌倒狀態(tài)的第一個判斷依據(jù)??梢杂葾DXL345的Free_Fall中斷來檢測。
2. 撞擊:失重之后,人體發(fā)生跌倒的時候會與地面或其他物體發(fā)生撞擊,在加速度曲線中會產(chǎn)生一個很大的沖擊。這個沖擊可以通過ADXL345的Activity中斷來檢測。因此,F(xiàn)ree_Fall中斷之后,緊接著產(chǎn)生Activity中斷是跌倒狀態(tài)的第二個判斷依據(jù)。
3. 靜止:通常,人體在跌倒后,也就是撞擊發(fā)生之后,不可能馬上起來,會有短暫的靜止狀態(tài)(如果人因為跌倒而導致昏迷,甚至可能是較長時間的靜止)。表現(xiàn)在加速度曲線上就是會有一段時間的平穩(wěn)。這可以通過ADXL345的Inactivity中斷來檢測。因此,Activity中斷之后的Inactivity中斷是跌倒狀態(tài)的第三個判斷依據(jù)。
4. 與初始狀態(tài)比較:跌倒之后,人體會發(fā)生翻轉(zhuǎn),因此人體的方向會與原先靜止站立的姿態(tài)(初始狀態(tài))不同。這使得跌倒之后的靜止狀態(tài)下的三軸加速度數(shù)值與初始狀態(tài)下的三軸加速度不同(見圖4)。假設跌倒檢測器固定在被測人體上的某個部位,這樣初始狀態(tài)下的三軸加速度數(shù)值可以認為是已知的(本例中,初始狀態(tài)為:X軸0g,Y軸-1g,Z軸0g)。讀取Inactivity中斷之后的三軸加速度數(shù)據(jù),并與初始狀態(tài)進行比較。如圖4所示,重力加速度方向由Y軸上的-1g變?yōu)榱薢軸上的1g,這說明人體發(fā)生了側(cè)向跌倒。因此,跌倒檢測的第四個依據(jù)就是跌倒后的靜止狀態(tài)下加速度值與初始狀態(tài)發(fā)生變化,且矢量變化超過一定的門限值(比如0.7g)。
這四個判斷依據(jù)綜合在一起,構(gòu)成了整個的跌倒檢測算法,可以對跌倒狀態(tài)給出報警。當然,還要注意各個中斷之間的時間間隔要在合理的范圍之內(nèi)。比如,除非是從很高的樓頂?shù)粝聛恚駝tFree_Fall中斷(失重)和Activity中斷(撞擊)之間的時間間隔不會很長。同樣,通常情況下, Activity中斷(撞擊)和Inactivity中斷(靜止)之間的時間間隔也不會很長。本文接下來會通過一個具體實例給出一組合理的取值。當然,相關中斷的檢測門限以及時間參數(shù)也可以根據(jù)需要而靈活設置。
另外,如果跌倒造成了嚴重的后果,比如,導致了人的昏迷。那么人體會在更常的一段時間內(nèi)都保持靜止。這個狀態(tài)仍然可以通過Inactivity中斷來檢測。也就是說,如果發(fā)現(xiàn)在跌倒之后的很長時間內(nèi)都保持Inactivity狀態(tài),可以再次給出一個嚴重報警。
典型電路連接
ADXL345和微控制器之間的電路連接非常簡單。本文中的測試平臺由ADXL345和微控制器ADuC70262組成。圖5給出了ADXL345和ADuC70262之間的典型電路連接。ADXL345的CS管腳接高電平,表示ADXL345工作在I2C模式。SDA和SCL是I2C總線的數(shù)據(jù)線和時鐘線,分別連接到ADuC7026相應的I2C總線管腳。ADuC7026的一個GPIO管腳連接到ADXL345的ALT管腳,用來選擇ADXL345的I2C地址。ADXL345的INT1管腳連接到ADuC7026的IRQ輸入用來產(chǎn)生中斷信號。
其他的單片機或者處理器都可以采用與圖5類似的電路與ADXL345進行連接。ADXL345還可以工作在SPI模式以獲得更高的數(shù)據(jù)傳輸速率。關于SPI工作模式的具體描述,請參考ADXL345數(shù)據(jù)手冊。
圖5 ADXL345與微控制器之間的典型電路連接
表1 ADXL345寄存器功能說明
地址 | 寄存器名稱 | 類型 | 默認值 | 說明 | 設置值 | 設置的功能 |
0 | DEVID | 只讀 | 0xE5 | 器件ID | 只讀 | |
1-1C | Reserved | 保留,不要操作 | 保留 | |||
1D | THRESH_TAP | 讀/寫 | 0x00 | Tap的門限 | 不使用 | |
1E | OFSX | 讀/寫 | 0x00 | X軸失調(diào) | 0x06 | 補償X軸失調(diào),通過初始化校正獲得 |
1F | OFSY | 讀/寫 | 0x00 | Y軸失調(diào) | 0xF9 | 補償Y軸失調(diào),通過初始化校正獲得 |
20 | OFSZ | 讀/寫 | 0x00 | Z軸失調(diào) | 0xFC | 補償Z軸失調(diào),通過初始化校正獲得 |
21 | DUR | 讀/寫 | 0x00 | Tap的持續(xù)時間 | 不使用 | |
22 | LATENT | 讀/寫 | 0x00 | Tap的延遲時間 | 不使用 | |
23 | WINDOW | 讀/寫 | 0x00 | Tap的時間窗 | 不使用 | |
24 | THRESH_ACT | 讀/寫 | 0x00 | Activity的門限 | 0x20/0x08 | 設置Activity的門限為2g或0.5g |
25 | THRESH_INACT | 讀/寫 | 0x00 | Inactivity的門限 | 0x03 | 設置Inactivity的門限為0.1875g |
26 | TIME_INACT | 讀/寫 | 0x00 | Inactivity的時間 | 0x02/0x0A | 設置Inactivity的時間為2s或10s |
27 | ACT_INACT_CTL | 讀/寫 | 0x00 | Activity/Inactivity使能控制 | 0x7F/0xFF | 使能X、Y、Z三軸的Activity和Inactivity功能,其中Inactivity為AC coupled模式,Activity為DC coupled 或 AC coupled模式 |
28 | THRESH_FF | 讀/寫 | 0x00 | Free-Fall的門限 | 0x0C | 設置Free-Fall的門限為0.75g |
29 | TIME_FF | 讀/寫 | 0x00 | Free-Fall的時間 | 0x06 | 設置Free-Fall的時間為30ms |
2A | TAP_AXES | 讀/寫 | 0x00 | Tap/Double Tap使能控制 | 不使用 | |
2B | ACT_TAP_STATUS | 只讀 | 0x00 | Activity/Tap中斷軸指示 | 只讀 | |
2C | BW_RATE | 讀/寫 | 0x0A | 采樣率和功耗模式控制 | 0x0A | 設置采樣率為100Hz |
2D | POWER_CTL | 讀/寫 | 0x00 | 工作模式控制 | 0x00 | 設置為正常工作模式 |
2E | INT_ENABLE | 讀/寫 | 0x00 | 中斷使能控制 | 0x1C | 使能Activity、Inactivity、Free-Fall中斷 |
2F | INT_MAP | 讀/寫 | 0x00 | 中斷影射控制 | 0x00 | 所有中斷影射到Int1管腳 |
30 | INT_SOURCE | 只讀 | 0x00 | 中斷源指示 | 只讀 | |
31 | DATA_FORMAT | 讀/寫 | 0x00 | 數(shù)據(jù)格式控制 | 0x0B | 設置為+/-16g測量范圍,13bit右對齊模式,中斷為高電平觸發(fā),使用I2C數(shù)據(jù)接口 |
32 | DATAX0 | 只讀 | 0x00 | X軸數(shù)據(jù) | 只讀 | |
33 | DATAX1 | 只讀 | 0x00 | 只讀 | ||
34 | DATAY0 | 只讀 | 0x00 | Y軸數(shù)據(jù) | 只讀 | |
35 | DATAY1 | 只讀 | 0x00 | 只讀 | ||
36 | DATAZ0 | 只讀 | 0x00 | Z軸數(shù)據(jù) | 只讀 | |
37 | DATAZ1 | 只讀 | 0x00 | 只讀 | ||
38 | FIFO_CTL | 讀/寫 | 0x00 | FIFO控制 | 不使用 | |
39 | FIFO_STATUS | 只讀 | 0x00 | FIFO狀態(tài) | 不使用 |
評論