国产亚洲精品AA片在线观看,丰满熟妇HD,亚洲成色www成人网站妖精,丁香五月天婷婷五月天男人天堂

新聞中心

EEPW首頁 > 嵌入式系統(tǒng) > 設計應用 > 機器學習實戰(zhàn):GNN(圖神經(jīng)網(wǎng)絡)加速器的FPGA解決方案

機器學習實戰(zhàn):GNN(圖神經(jīng)網(wǎng)絡)加速器的FPGA解決方案

—— 應用Achronix Speedster7t FPGA設計高能效、可擴展的GNN加速器
作者:Achronix資深現(xiàn)場應用工程師袁光 (Kevin Yuan) 時間:2020-10-19 來源:電子產(chǎn)品世界 收藏


本文引用地址:http://www.ljygm.com/article/202010/419365.htm

1 概述

得益于大數(shù)據(jù)的興起以及算力的快速提升,機器學習技術在近年取得了革命性的發(fā)展。在圖像分類、語音識別、自然語言處理等機器學習任務中,數(shù)據(jù)為大小維度確定且排列有序的歐氏(Euclidean)數(shù)據(jù)。然而,越來越多的現(xiàn)實場景中,數(shù)據(jù)是以圖(Graph)這種復雜的非歐氏數(shù)據(jù)來表示的。Graph不但包含數(shù)據(jù),也包含數(shù)據(jù)之間的依賴關系,比如社交網(wǎng)絡、蛋白質(zhì)分子結構、電商平臺客戶數(shù)據(jù)等等。數(shù)據(jù)復雜度的提升,對傳統(tǒng)的機器學習算法設計以及其實現(xiàn)技術帶來了嚴峻的挑戰(zhàn)。在此背景之下,諸多基于Graph的新型機器學習算法—GNN(圖神經(jīng)網(wǎng)絡),在學術界和產(chǎn)業(yè)界不斷的涌現(xiàn)出來。

GNN對算力和存儲器的要求非常高,其算法的軟件實現(xiàn)方式非常低效,所以業(yè)界對GNN的硬件加速有著非常迫切的需求。我們知道傳統(tǒng)的CNN(卷積神經(jīng)網(wǎng)絡網(wǎng)絡)硬件加速方案已經(jīng)有非常多的解決方案;但是,GNN的硬件加速尚未得到充分的討論和研究,在本文撰寫之時,Google和百度皆無法搜索到關于GNN硬件加速的中文研究。本文的撰寫動機,旨在將國外最新的GNN算法、加速技術研究、以及筆者對GNN的FPGA加速技術的探討相結合起來,以全景圖的形式展現(xiàn)給讀者。

2 GNN 簡介

GNN的架構在宏觀層面有著很多與傳統(tǒng)CNN類似的地方,比如卷積層、Polling、激活函數(shù)、機器學習處理器(MLP)和FC層等等模塊,都會在GNN中得以應用。下圖展示了一個比較簡單的GNN架構。

image.png

圖 1 典型的GNN架構

但是, GNN中的Graph數(shù)據(jù)卷積計算與傳統(tǒng)CNN中的2D卷積計算是不同的。以圖2為例,針對紅色目標節(jié)點的卷積計算,其過程如下:

●   Graph卷積:以鄰居函數(shù)采樣周邊節(jié)點特征并計算均值,其鄰居節(jié)點數(shù)量不確定且無序(非歐氏數(shù)據(jù))。

●   2D卷積:以卷積核采樣周邊節(jié)點特征并計算加權平均值,其鄰居節(jié)點數(shù)量確定且有序(歐氏數(shù)據(jù))。

image.pngimage.png

圖2 Graph卷積和2D卷積

3 GraphSAGE算法簡介

學術界已對GNN算法進行了非常多的研究討論,并提出了數(shù)目可觀的創(chuàng)新實現(xiàn)方式。其中,斯坦福大學在2017年提出的GraphSAGE是一種用于預測大型圖中動態(tài)新增未知節(jié)點類型的歸納式表征學習算法,特別針對節(jié)點數(shù)量巨大、且節(jié)點特征豐富的圖做了優(yōu)化。如下圖所示,GraphSAGE計算過程可分為三個主要步驟:

image.png

圖3 GraphSAGE算法的視覺表述

●   鄰節(jié)點采樣:用于降低復雜度,一般采樣2層,每一層采樣若干節(jié)點

●   聚合:用于生成目標節(jié)點的embedding,即graph的低維向量表征

●   預測:將embedding作為全連接層的輸入,預測目標節(jié)點d的標簽

為了在FPGA中實現(xiàn)GraphSAGE算法加速,我們需要知悉其數(shù)學模型,以便將算法映射到不同的邏輯模塊中。下圖所示的代碼闡述了本算法的數(shù)學過程。

image.png

圖4 GraphSAGE算法的數(shù)學模型

對于每一個待處理的目標節(jié)點xv,GraphSAGE 執(zhí)行下列操作:

1)通過鄰居采樣函數(shù)N(v),采樣子圖(subgraph)中的節(jié)點

2)聚合被采樣的鄰節(jié)點特征,聚合函數(shù)可以為mean()、lstm()或者 polling()等

3)將聚合結果與上一次迭代的輸出表征合并,并以Wk做卷積

4)卷積結果做非線性處理

5)迭代若干次以結束當前第k層所有鄰節(jié)點的處理

6)將第k層迭代結果做歸一化處理

7)迭代若干次以結束所有K層采樣深度的處理

8)最終迭代結果zv即為輸入節(jié)點xv的嵌入(embedding)

4. GNN加速器設計挑戰(zhàn)

GNN的算法中涉及到大量的矩陣計算和內(nèi)存訪問操作,在傳統(tǒng)的x86架構的服務器上運行此算法是非常低效的,表現(xiàn)在速度慢,能耗高等方面。

新型GPU的應用,可以為GNN的運算速度和能效比帶來顯著收益。然而GPU內(nèi)存擴展性的短板,使其無法勝任海量節(jié)點Graph的處理;GPU的指令執(zhí)行方式,也造成了計算延遲過大并且不可確定,無法勝任需要實時計算Graph的場景。

如上所述種種設計挑戰(zhàn)的存在,使得業(yè)界急需一種可以支持高度并發(fā)實時計算、巨大內(nèi)存容量和帶寬、以及在數(shù)據(jù)中心范圍可擴展的GNN加速解決方案。

image.png

圖5 Achronix Speedster7t1500 高性能FPGA 架構

5 GNN加速器的FPGA設計方案

Achronix 公司推出的 Speedster7t系列高性能FPGA,專門針對數(shù)據(jù)中心和機器學習工作負載進行了優(yōu)化,消除了CPU、GPU以及傳統(tǒng) FPGA 存在的若干性能瓶頸。Speedster7t FPGA 基于臺積電的 7nm FinFET 工藝,其架構采用革命性的新型 2D 片上網(wǎng)絡 (NoC),獨創(chuàng)的機器學習處理器矩陣 (MLP),并利用高帶寬 GDDR6 控制器、400G 以太網(wǎng)和 PCI Express Gen5 接口,在保障ASIC 級別性能的同時,為用戶提供了靈活的硬件可編程能力。下圖展示了Speedster7t1500高性能FPGA的架構。

如上所述種種特性,使得Achronix Speedster7t1500 FPGA器件為GNN加速器設計中所面臨的各種挑戰(zhàn),提供了完美的解決方案。

表1 GNN設計挑戰(zhàn)與Achronix的Speedster7t1500 FPGA解決方案

GNN設計挑戰(zhàn)

Speedster7t1500解決方案

高速矩陣運算

MLP機器學習處理器矩陣

高帶寬低

延遲存儲

LRAM+BRAM+GDDR6+DDR4

高并發(fā)低

延遲計算

FPGA使用可編程邏輯電路,

在硬件層面確保低高并發(fā)延遲計算

內(nèi)存擴展

基于4*400Gbps的RDMA,

確保在數(shù)據(jù)中心范圍以極低延遲擴展內(nèi)存訪問

算法不斷演進

FPGA使用可編程邏輯電路,

在硬件層面確保算法可升級重配

設計復雜

豐富的硬IP減少開發(fā)時間和復雜度,

NoC簡化模塊間互連并提高時序

5.1 GNN加速器頂層架構

本GNN加速器針對GraphSAGE進行設計,但其架構具有一定的通用性,可以適用于其他類似的GNN算法加速,其頂層架構如下圖所示。

image.png

圖6 GNN加速器頂層架構(來源:Achronix原創(chuàng))

圖中GNN Core為算法實現(xiàn)的核心部分,其設計細節(jié)將在下文展開談論;RoCE-Lite為RDMA協(xié)議的輕量級版本,用于通過高速以太網(wǎng)進行遠程內(nèi)存訪問,以支持海量節(jié)點的Graph計算,其設計細節(jié)將在本公眾號的后續(xù)文章中討論;400GE以太網(wǎng)控制器用來承載RoCE-Lite協(xié)議;GDDR6用于存放GNN處理過程中所需的高速訪問數(shù)據(jù);DDR4作為備用高容量內(nèi)存,可以用于存儲相對訪問頻度較低的數(shù)據(jù),比如待預處理的Graph;PCIe Gen5x16提供高速主機接口,用于與服務器軟件交互數(shù)據(jù);上述所有模塊,皆通過NoC片上網(wǎng)絡來實現(xiàn)高速互聯(lián)。

5.2 GNN Core 微架構

在開始討論GNN Core 微架構之前,我們先回顧一下本文第3節(jié)中的GraphSAGE算法,其內(nèi)層循環(huán)的聚合以及合并(包含卷積)等兩個操作占據(jù)了算法的絕大部分計算和存儲器訪問。通過研究,我們得到這兩個步驟的特征如下:

表2 GNN算法中聚合與合并操作對比


聚合操作

(Aggregation)

合并操作

(Combination)

存儲器

訪問模式

間接訪問,不規(guī)則

直接訪問,規(guī)則

數(shù)據(jù)復用

計算模式

動態(tài),不規(guī)則

靜態(tài),規(guī)則

計算量

性能瓶頸

存儲

計算

可以看出,聚合操作與合并操作,其對計算和存儲器訪問的需求完全不同。聚合操作中涉及到對鄰節(jié)點的采樣,然而Graph屬于非歐氏數(shù)據(jù)類型,其大小維度不確定且無序,矩陣稀疏,節(jié)點位置隨機,所以存儲器訪問不規(guī)則并難以復用數(shù)據(jù);在合并操作中,其輸入數(shù)據(jù)為聚合結果(節(jié)點的低維表征)以及權重矩陣,其大小維度固定,存儲位置規(guī)則線性,對存儲器訪問不存在挑戰(zhàn),但是矩陣的計算量非常大。

基于以上分析,我們決定在GNN Core加速器設計中用兩種不同的硬件結構來處理聚合操作與合并操作,功能框圖如下圖所示:

image.png

圖7 GNN Core功能框圖(來源:Achronix原創(chuàng))

聚合器(Aggregator):通過SIMD(單指令多數(shù)據(jù)處理器)陣列來對Graph進行鄰居節(jié)點采樣并進行聚合操作。其中的“單指令”可以預定義為mean()均值計算,或者其他適用的聚合函數(shù);“多數(shù)據(jù)”則表示單次mean()均值計算中需要多個鄰居節(jié)點的特征數(shù)據(jù)作為輸入,而這些數(shù)據(jù)來自于子圖采樣器(Subgraph Sampler);SIMD陣列通過調(diào)度器Agg Scheduler做負載均衡;子圖采樣器通過NoC從GDDR6或DDR4讀回的鄰接矩陣和節(jié)點特征數(shù)據(jù)h0v,分別緩存在Adjacent List Buffer和Node Feature Buffer之中;聚合的結果hkN(v)存儲在Agg Buffer之中。

合并器(Combinator):通過脈動矩陣PE來執(zhí)行聚合結果的卷積操作;卷積核為Wk權重矩陣;卷積結果通過ReLU激活函數(shù)做非線性處理,同時也存儲在Partial Sum Buffer中以方便下一輪迭代。

合并的結果通過L2BN歸一化處理之后,即為最終的節(jié)點表征hkv。

在比較典型的節(jié)點分類預測應用中,該節(jié)點表征hkv可以通過一個全連接層(FC),以得到該節(jié)點的分類標簽。此過程屬于傳統(tǒng)的機器學習處理方法之一,沒有在GraphSAGE論文中體現(xiàn),此設計中也沒有包含這個功能。

6 結論

本文深入討論了GraphSAGE GNN 算法的數(shù)學原理,并從多個維度分析了GNN加速器設計中的技術挑戰(zhàn)。作者通過分解問題并在架構層面逐一解決的方法,綜合運用Achronix Speedster7t1500 FPGA所提供的競爭優(yōu)勢,創(chuàng)造了一個性能極佳且高度可擴展的GNN加速解決方案。



關鍵詞:

評論


相關推薦

技術專區(qū)

關閉